

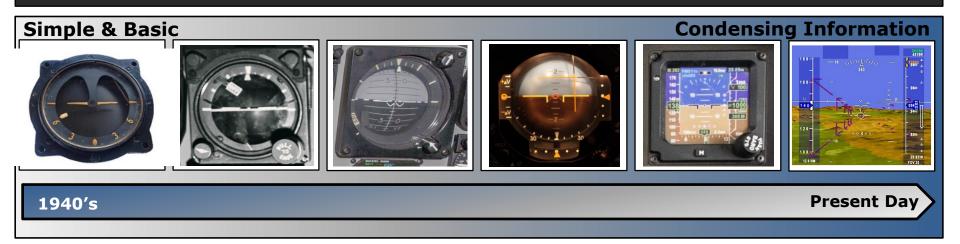
A Textron Company

Advanced Cockpit Concept Methodology & Design

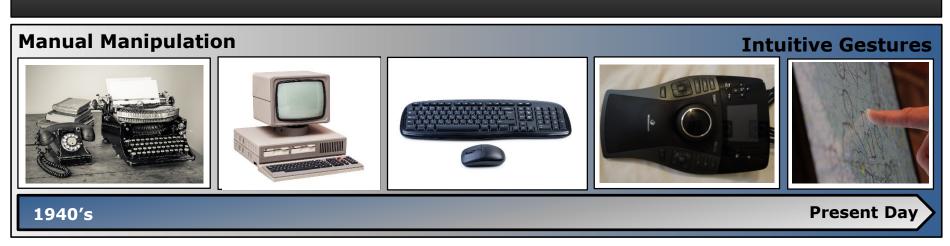
Jeremy R. Chavez April 19th, 2017

The Endeavor

- Personal Background
 - Jeremy R. Chavez
 - B.S. Mechanical Engineering from Texas Tech University
 - Certified Private Pilot (IFR training in progress)
 - Certified Remote Pilot in Command
- Team Lead in developing a next generation fight deck for the V-280 full scale mock-up
- The team was given a blank canvas in which to create a vision of the "art of the possible" for the next generation tiltrotor and commercial aircraft
- With an open environment to explore and drive the design one question remained...


...where do you start?

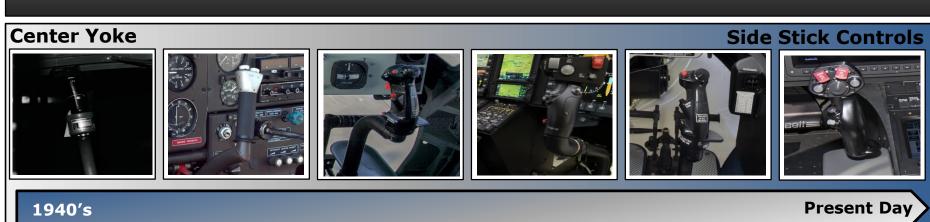
Observing the Trend - The Attitude Indicator



- The attitude indicator is a primary flight instrument that simply informs the pilot the orientation of the aircraft relative to the earth
 - Over the years the attitude indicator has evolved beyond a simple aircraft orientation reference instrument to a consolidation of other critical flight information
 - Additional information includes heading indicators, synthetic vision flight path vectoring, etc.

Observation: Provide precise, detailed and focused information

Observing the Trend - Technology Interface



- Technology interface has evolved from physical analog devices to intuitive human gestures
 - With the introduction of the smartphone, touch and intuitive gestures have become commonplace in our society
 - Voice command is becoming more prevalent, just ask Siri™ or Alexa™

Observation: Simple & Intuitive

Observing the Trend - Aircraft Interface

Over time flight controls have remained consistent

- Even with all the advancements in technology and avionics displays the physical connection between the human and the aircraft is still done with the stick and rudder
- Side sticks are becoming more common as they are more ergonomic and reduce crew fatigue

Observation: Direct physical inputs to "feel" the aircraft and provide precise touch control will likely remain even with higher levels of autonomous systems

Projecting into the Future - Who are the future aviators?

Advanced HUD Imagery

Portable Tech w/flight instrumentation

Touch Screen Avionics
Interface

Inflight Data Link (ADS-B)

Advanced Synthetic Vision & Autonomy

Cultural Technology

Smart Phones

Computers / Laptops

Augmented Reality / VR

Wearable Technologyy

Computer Interface

Voice Command

Social Media

•Facebook ™
•Instagram ™

•Snapchat ™

Technology Consumption

Streaming Services

• Netflix ™

Amazon Prime ™

•iTunes ™

User Populated Data

• Wikipedia ™

·Yelp TM

•Waze TM

Sunrise Tech (Observations)

Autonomy / A.I.Intuitive & Minimalistic DesignVoice Commands

Hieroglyphical Communication

Future Aviators

Items Approaching Sunset (Observations)

Mouse
Conventional Keypad
Traditional Telephone Communication
Handwriting

Embracing the Future

Bell V-280 Valor

- Next Generation
 Tiltrotor
- Concept designed for the U.S. Army JMR/FVL effort

Bell FCX-001

- AdvancedCommercialHelicopter Concept
- Represents the future path of Bell Helicopter

Bell V-280 Advanced Cockpit Design

Adaptability

- Screen can adapt to fit the evolving requirements of the crew
 - Display system can be changed from pilot in command to an interactive mission planning workspace
 - Displays can quickly recover to a known state with voice command or simple input

Survivable

- Mosaic display stiches together the imagery from multiple screens
 - Eliminates single point of failure
 - System logic redistributes and prioritizes information depending on inoperative tile(s)

Intuitive Interface

- Use of touch gestures in addition to voice commands, iconology and predictive A.I.
 - Reduce pilot strain in high workload environments
 - Reduce avionics learning curve

Enhanced Visual Acuity

 Ultra-wide aspect ratio screen with synthetic vision or enhanced imagery serves as a large artificial horizon in DVE situations

Bell V-280 Advanced Cockpit Design

Enhanced Visual Acuity

Bell V-280 Advanced Cockpit Design

Enhanced Visual Acuity

Bell V-280 Advanced Cockpit Design

V-280 Screen Demonstration

Bell FCX-001 Cockpit Design

Minimalistic Design

- Simplistic flight control systems
 - Couple minimalistic flight control inputs with aircraft stability flight control laws to blend autonomy with "hand flying"
- Virtual flight deck
 - Removes avionics displays with virtual displays, saving weight and cabin volume

Customizable

- Virtual flight displays can be placed to the aviators preference and fixed in virtual space or affixed to visor movement for additional situational awareness

Intuitive Interface

- Use of hand gestures and voice command technology
 - Augmented reality technology allows for the aviator to move items around a virtual work space with intuitive hand gestures
 - Voice command can be tailored to the individual normal speech patters.

Enhanced Situational Awareness

- A.R. visor aided with aircraft flight data, GPS data and fixed spatial references allows synthetic vision to be projected through the airframe

Bell FCX-001 Cockpit Design

Challenges - Standardization & Certification

Risk / Concern

- A highly adaptable screen allows the crew to repurpose screen real estate depending on evolving needs
 - Detailed weather interrogation
 - Objective area data interpretation (UAS feeds, ground force communications, etc.)
- Customizable screens and the ability to turn on and off visual data presents a unique challenge
 - Because I can move something here does that mean should I?
 - What if a contributing factor to an incident is because of data clutter?

- Primary flight display will always be visible on both side
- You can never close or turn off the primary flight display but you can minimize the display to a pre-determined "no smaller than" size
- Identify the balance between free reign and home zones / keep out zones
 - We don't want to design system flexibility into the displays only to over constrain with restrictions
- Sliding data across the screen places data into a capture area

Challenges - System Reliability

- Risk / Concern
 - Level of back-ups vs. probability of failure
 - In the event of electrical failure are stand-by instrumentation needed?
 - Are analog instruments required?

- Potential Risk Mitigation
 - Triple redundant systems such as deployable HUD, Helmet Visors and deployable instrumentation (FCX-001) in addition to the primary display screen
 - Each system intended to run off segregated systems (Electrical Bus 1, 2 or 3) to eliminate single point failure

Analog Stand by

Deployable HUD

Helmet Visor

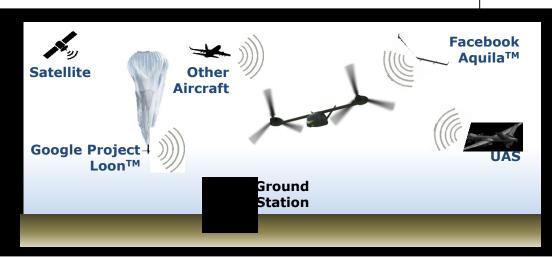
Personal Stand by

Challenges - L.O.S. & Data Corruption

Risk / Concern

- LOS & data corruption
 - With more reliance on data link and autonomy how much connectivity can we assume?
 - We need to guard against data corruption so how much encryption is required?

- In the event of data link LOS or data corruption, the aircraft will have manual flight controls and manual flight control laws built into the system architecture
 - In even the most technologically sophisticated aircraft, the pilot may have to resort to pilotage and dead reckoning
 - Future pilots will still need those skillsets
- Use multiple data links
 - GPS / Satellite
 - ADS-B
 - Cellular Network



Challenges - Computational Demands

Risk / Concern

- Future aviation and data absorption are likely to become a computational intensive environment
 - Multiple systems competing for processing power and memory
 - Access to high speed data?
 - Latency concerns?
 - Interference?

- Inflight data network nodes
 - Push data when needed such as airport diagrams, approach and departure plates, etc. rather than internal storage of all the data
- Aerial Internet Drone Network Technology
 - Facebook Aquila™
 - Google Project Loon™
- Standardized air-to-air data link
 - Share info from aircraft in close proximity to one another

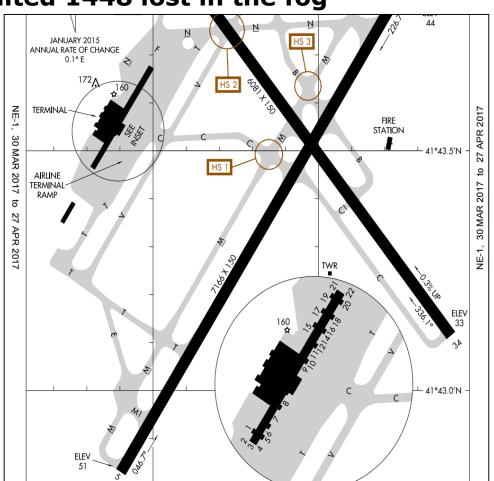
Challenges - Screen Durability

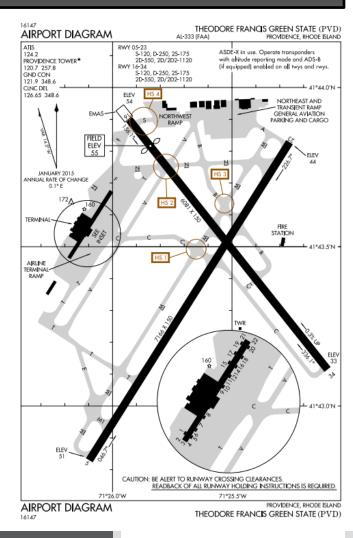
- Risk / Concern
 - Complete loss of critical flight data
 - What happens if I lose the entire screen?

- Mosaic screen construction
 - Eliminate single points of failure
- Redistribution of data
 - System logic will identify a fault in an inoperative tile(s) and will automatically reconcile and redistribute the information
 - Data will be hierarchical meaning in the event of reconciliation and redistribution, critical data (primary flight display, navigation, communication, etc.) will be given priority
- Reparability
 - Tiles will be common and interchangeable

Closing Observations

- The technology genie cannot be put back into the bottle
 - Cockpit design and human factors considerations must adapt to the future aviator
- Autonomy and A.I. will likely take over mundane tasks
 - Aircraft logic can help prioritize radio frequencies, adjust barometric settings, monitor traffic, provide departure / approach procedures, etc.
- Bandwidth, global access to high speed data and data encryption will likely become a critical feature to future flight.
 - Reliance on up-to-date data for safe flight (navigation, autonomy, aircraft performance) can create an Achilles heal that needs to be protected.
- Future aviator tasks will focus on cognitive thinking such as adaptive mission planning and critical decision making based on evolving or incomplete data
 - Technology can be a wonderful servant and horrible master
 - The human will always be in the loop to use intuition and good sense
 - End game scenarios





Closing Observations

United 1448 lost in the fog

Questions?

A Textron Company